
Space-efficient Algorithms for Data Streams and Histograms

Paul van Tilburg
Department of Mathematics and Computer Science

Eindhoven University of Technology
paul@luon.net

February 27, 2007

Abstract

This survey paper looks into algorithms that deal with massive data sets, streaming data
in particular. In addition to reviewing data streaming models and some common problems
and applications where space-efficiency is required, the paper explores a technique for con-
structing approximate representations of the data set by summarising the frequency of the
values called histograms. Three types of histograms are discerned and discussed separately:
V-optimal, equi-width and end-biased histograms.

1 Introduction

In the field of information processing,
database systems in particular [10], more and
more algorithms have to deal with massive
data sets. This eventually leads to the prob-
lem that the data either is not storable any-
more or to the situation that it takes to long to
retrieve the entire data set or just a parts of it.
This means that the data has to be processed
as it flows by. Streaming algorithms are the
algorithms that process the data in this flow-
ing fashion using mostly a single pass, and in
a few cases multiple passes.

In [8], a data stream is defined as “a se-
quence of data items that can be read once
by algorithm”. We use this definition as basis
for the term “data stream” throughout the
paper. The data streaming models that are
often used in the area of streaming algorithms
and also in this paper, will be discussed in the
next section.

This paper first explores the area of data
stream algorithms in general in Section 2
where we will introduce data stream models
that are used throughout this paper and we
will discuss two common space-efficient algo-
rithms.

Another interesting area where space-
efficiency has to be applied is considered in
this paper. In Section 3 we will focuses on
creating approximate space-efficient represen-
tations of the data set by constructing his-
tograms.

These data set distribution representing
histograms are often used in large database
systems, where it is useful to monitor the
database contents so that query execution
and processing can be optimised. Moreover,
an often occurring usage of histograms is in
the monitoring of Internet traffic [10]. Inter-
net packet headers contain source and desti-
nation addresses. Based on a histogram of
packet destinations, the router could make
real-time routing or load-balancing decisions.
To be able to log traffic under given space
constraints, routers can summarise the traffic
in a space-efficient manner instead of keep-
ing count of all traffic which is unfeasible.
The following three types of histograms, each
with a different purpose, are discussed sepa-
rately: V-optimal, equi-width and end-biased
histograms.

The last section, Section 4, will contain
some concluding remarks and references to re-
lated work.

1

2 Common Algorithms

This section focuses on the part that most al-
gorithms have in common, namely the data
stream models. Besides the models two
space-efficient algorithms that are common-
place and “famous” are discussed: the ap-
proximate L1-difference algorithm and the
Fk-approximation frequency moments algo-
rithm.

In [8], M. Henzinger et al. introduce a di-
chotomy for data stream algorithms that we
use to characterise the algorithms presented
in this paper:

1. one-pass or multi-pass algorithm:
the algorithm processes the items of the
data stream in one or multiple iterations
respectively.

2. deterministic or randomised algorithm:
the algorithm will either always yield the
same fixed result or have an random ele-
ment in it thus yielding different results.

3. exact or approximate algorithm:
the algorithm will either yield the opti-
mal solution or an ρ-approximation of the
optimal solution.

S. Guha and N. Koudas also mention another
important distinction between data stream al-
gorithms in [7] that should be considered:

4. agglomerative or fixed-window algorithm:
the algorithm either considers all items
from the start of the stream or it only
considers the last M elements, mostly
due to a memory constraint.

This paper will mostly deal with one-pass
algorithms, since most algorithms consider
the data in a streaming fashion without any
processing afterwards. This is even more so
the case for the histogram-constructing algo-
rithms. Moreover, most of the discussed algo-
rithms are either deterministic or randomised,
exact and agglomerative.

2.1 Data Stream Models

To be able to talk about data streams,
we have to have a model to work with.
S. Muthukrishnan presents three common
models in [10] that deal with data streams.
For the models we have a given input data
stream of items a1, a2, . . . and an underlying
signal A, a function A : [1 . . . N] → R where
N is the number of signal elements and R
some arbitrary range, such as N or R. Let Ai

denote the state of A after ai is received. The
three models give an interpretation of how the
items ai relate to the (elements of) signal A.

The Time Series model: Each ai corre-
sponds to A[i] in increasing order of i. Here,
N is the number of items received until now
and R the possible values of the items. An ex-
ample could be a data stream of stock values
or an amount IP traffic from a certain router
that are received every 5 minutes.

The Cash Register model: Each ai is an in-
crement of a value of one of the elements of
A. An item can be seen as a tuple (j, Inci):
the element of A indexed by j and the incre-
ment Inci. This would mean for every arriv-
ing item: Ai[j] = Ai−1[j] + Inci. According
to [10] this is the most popular data stream
model. A possible application of this model is
the monitoring of IP traffic from or to [1 . . . N]
destination hosts.

The Turnstile model: This model is known
under other names, but we will use this one
since the name suits the intuition of the
model. The Turnstile model is a general ver-
sion of the Cash Register model. It not only
considers increments to elements of A but all
updates so it can fully suit dynamic situa-
tions in which one can have both inserts and
deletes. The model is inspired by a subway
train station where turnstiles keep track of the
number of people in the station by counting
the people moving in and out of the station.

2

Each ai is an update of a value of one of
the elements of A. This means that ai is
some tuple (j, Updi) with j some element
(index) of A and the update Updi. After
every item that has arrived, we have that:
Ai[j] = Ai−1[j] + Updi. For the strict version
of the Turnstile model we will assume that
Ai[j] ≥ 0 for all i and j.

The Turnstile model will suit the application
of histogram construction when we are try-
ing to approximate the number of entries in a
certain database while they are inserted and
deleted. Note that in the case that we just
have to count incoming traffic, the Cash Reg-
ister model will suffice. However, since this is
a more specific form of the Turnstile model,
we will assume usage of the strict Turnstile
model from now on. For B-histogram con-
struction we can instantiate the model with
the number of signal elements N = B and
value range R = N.

2.2 Difference Algorithm

The L1-difference algorithm presented in
in [4] solves the following problem: given
two data streams ai and bi, compute the L1-
difference D1 =

∑
i |ai − bi| between the two

functions in a space-efficient way. The pre-
sented algorithm can be categorised as an
one-pass, randomised, approximate, agglom-
erative algorithm by our earlier presented di-
chotomy. A practical application of this algo-
rithm could be to indicate the extent to which
amount traffic differ between different routers
or between different time intervals.

Algorithm The algorithm shown in algo-
rithm listing 2.1 assumes the input stream to
be an arbitrary interleaving of the two data
streams and assumes that the maximal value
M and number of items N are known. The
data stream items ci (either some ai or bi) that
arrive can be considered as a tuple (i, ci,+1)
or (i, ci,−1).

For each of the sample spaces, indexed by
k, l (of which the ranges are specified later),
the algorithm defines a family of M ·N random
variables Vi,j for 0 ≤ i < N and 0 ≤ j < M .
Each variable Vi,j has the value ±1 and is con-
structed from a seeds si, which in turn is de-
rived from some master seed S. The random
variables are constructed in such a way that
they are n2-bad 4-wise independent [4, Sec-
tion 3.2]. Per sample space, the algorithm
also keeps a running sum Z, that is initialised
with 0.

Algorithm 2.1 The L1-difference algo-
rithm
L1-difference(〈(i, ci,±1)〉)

1 for k ← 1 to log(1
δ) do

2 for l← 1 to (8 · C)/ε2 do
3 Zk,l = 0
4 pick a master seed Sk,l

5 this implicitly defines Vi,j,k,l

6 for 0 ≤ i < N and 0 ≤ j < M
7 for each tuple (i, ci, θi) do
8 for k ← 1 to 4 log(1

δ) do
9 for l← 1 to (8 · C)/ε2 do

10 Zk,l ← Zk,l + θi
∑ci−1

j=0 Vi,j,k,l

11 return mediank avgl Z2
k,l

When the algorithm encounters a tuple
(i, ai,+1), it will add

∑ai−1
j=0 Vi,j to the run-

ning sum Z for all sample spaces. Conversely,
when the tuple (i, bi,−1) is encountered, the
algorithm subtracts

∑bi−1
j=0 Vi,j from Z. The

overall effect is that Z contains the sum of
the |ai − bi| random variables by cancelling
out the first min(ai, bi) variables. For the end
result, when i = N , we know that for Z2

there are D1 =
∑N

i=1 |ai − bi| terms which
are squares of the random variables that con-
tribute to square of the running sum. If the
cross terms Vi,jVk,l do not contribute much to
Z2, then Z2 is a good approximation of D1.

The steps of algorithm described above are
simultaneously performed for sample spaces
indexed by k, l for 1 ≤ k < log(1

d) and 1 ≤
l < (8 ·C)/ε2 with some C between 7.5 and 9

3

to ensure that the performance requirements
are met. Hence, the output is the median of
the average of the square of the running sums
Zk,l of all sample spaces.

Performance J. Feigenbaum et al. presented
the above algorithm (given in Figure 2.1) with
the following performance: given the data
stream items ai and bi with a maximal value
of M , then for every ε > 0 and δ > 0 the algo-
rithm computes with a probability of at least
1−δ an approximation W to the L1-difference
D1 of the two functions with |W −D1| ≤ εD1,
using space O(log(M) log(N) log(1

δ)/ε2) and
time O(log(N) log log(N)+log(M) log(1

δ)/ε2)
to process each item. A proof that the algo-
rithm meets this performance is given in Sec-
tion 3.5 of [4].

Correctness We will discuss a sketch of the
correctness proof here to show that the al-
gorithm outputs a random variable W =
mediank avgl Z2

k,l such that |W −D1| < εD1

with a probability of at least 1− δ. For a full
proof see Section 3.4 of [4]. We know that

Zk,l =
N∑

i=0

max(ai,bi)∑
j=min(ai,bi)

±Vi,j,k,l

since for each j ≤ min(ai, bi) both +Vi,j,k,l

and −Vi,j,k,l are added and for each j >
max(ai, bi) nothing is added. Now, we can
compute E[Z2

k,l] and E[Z4
k,l]. Using a rela-

belling of the indices i, j to m and the pairwise
independence of Vm and V ′

m, we can compute
that:

E[Z2
k,l] = E

(D1∑
m=1

±Vm

)2

=
D1∑

m=1

E[(±Vm)2] +

2
∑

1≤m<m′<D1

E[(±Vm)(±V ′
m)]

=
D1∑

m=1

1 = D1.

Using the n2-bad 4-wise independence proper-
ties of the random variables Vi,j , we can com-
pute that:

E[Z4
k,l] ≤ 6D2

1 +
N∑

i=1

4(bi − ai)2

≤ 10D2
1.

Hence, Var(Z2
k,l) = E[Z4

k,l]−E2[Z2
k,l] ≤ C ·D2

1

for C = 9. If Yk = avgl Zk,l is an average for
all l, then Var(Yk) ≤ ε2

8 D2
1. We then know

that Pr{|Yk − D1| > εD1} ≤ Var(Yk)
ε2D2

1
≤ 1

8 by
Chebyshev’s inequality. If W = mediank Yk

is the median for all k, then |W −D1| > εD1

iff |Yk − D1| > εD1 for half of the k’s. The
probability that this happens is at most δ by
Chernoff’s inequality.

2.3 Frequency Moments

Frequency moments provide a generic way of
looking at several properties of a stream of
data items. Given the Cash Register model,
the frequency moments of a data stream are
the numbers Fk =

∑N
i=1 A[i] where A[i] is the

kth power of the amount of the occurrences
(frequency) of the value i: |{j ∈ {1, . . . , N} |
aj = i}|k. Hence, for k = 0 we have that F0

is the number of distinct values in the data
stream. For k = 1, F1 is the length of the
stream. Also note that A contains an approx-
imated histogram of the data stream. And fi-
nally, for k ≥ 2, Fk captures the skew of the
data.

Algorithm In [1], N. Alon et al. present a
basic algorithm for determining an approxi-
mation of Fk for a given data stream. They
also provide an optimised version for F2 and
optimisation suggestions for F0 that are not
discussed in this paper.

The basic approach is similar to the L1-
difference algorithm: attempt a space-
efficient computation of a random variable of

4

Algorithm 2.2 The Fk-Approximation al-
gorithm
Fk-Approximation(< ci >)
1 for k ← 1 to 2 log(1

δ) do

2 for l← 1 to 8kn1−(1/k)

ε2
do

3 choose a random p from {1, . . . , N}
4 r ← |{q ∈ {p, . . . , N} | aq = ap}|
5 Xk,l ← N(rk − (r − 1)k)
6 return mediank avgl Xk,l

which the expected value equals Fk. There-
fore, the algorithm shown in algorithm list-
ing 2.2 is also an one-pass, randomised, ap-
proximate, agglomerative algorithm.

Performance The correctness proof sketch
that follows below will show that the algo-
rithm given in Figure 2.2 has the following
performance: given a data stream of N items
that have a maximal value of M , then for ev-
ery k ≥ 1, ε > 0 and δ > 0 the algorithm com-
putes an approximation W of the frequency
moment Fk in such a way that |W−Fk| < εFk

with a probability of at least 1−δ using space

O
(

k log(1
δ
)

ε2
n1−(1/k)(log(M) + log(N))

)
.

Correctness The correctness proof of the
Fk-approximation algorithm [1, p. 22] fol-
lows exactly the same structure as the proof of
the L1-difference algorithm. First it shows
for the random variables Xk,l of all sample
spaces that the expected value E[Xk,l] = Fk

and then it computes E[X2
k,l] ≤ kn1−(1/k)F 2

k .
Likewise it defines Yk to be the average
avgl Xk,l for all 0 ≤ l < 8kn1−(1/k)

ε2
, then we

know that the expected value

E[Yk] = E[Xk,l] = Fk

and the variance

Var(Yk) ≤
E[X2

k,l]ε
2

8kn1−(1/k)
=

F 2
k ε2

8
.

Hence, by Chebyshev’s inequality the proba-
bility that the approximation is off by more

than a factor ε is

Pr{|Yk − Fk| > εFk} ≤
Var(Yk)
ε2F 2

k

≤ 1
8
.

Finally, it assumes that W is the median
mediank Yk for all 1 ≤ k < 2 log(1

δ). Then,
by Chernoff’s inequality the probability that
half of the Yk variables deviate more than εFk

from Fk is at most δ.
Considering the space-wise performance,

each variable costs O(log(M)+ log(N)) space
and there are 2 log(1

δ) · 8kn1−(1/k)

ε2
variables.

Hence, the space usage of the algorithm is in

O
(

k log(1
δ
)

ε2
n1−(1/k)(log(M) + log(N))

)
.

3 Histogram algorithms

Histograms are used to approximate a repre-
sentation of a data set by summarising (or
counting) the number of occurrence of each
value in the set called the value frequency.
Therefore, the histogram captures the distri-
bution of the data stream item values.

Useful applications of histograms (of data
streams) are visualisations of data distribu-
tions, often used in statistical analysis, or
database engines that use a histogram to opti-
mise query executions or approximately pro-
cessing of queries [5]. As mentioned earlier in
the introduction, histograms are also useful as
traffic logs that summarise IP traffic.

In [2], B. Babcock et al. discern three types
of histograms that we will discuss separately
in the remaining part of this section:

• V-optimal histograms:
approximations of the distribution of the
values minimising an error function that
pairwise considers the estimated number
occurrences of the values and the real
number of occurrences.

• Equi-width histograms:
histograms where the domain is split up
into buckets such that the number of oc-
currences in each bucket is uniform across
all buckets.

5

• End-biased histograms:
histograms where the frequencies of the
values above some threshold are kept in
an exact manner, while the frequencies
below the threshold are approximated.
These histograms are used for what is
called iceberg querying.

Out of the three types, the V-optimal his-
togram is the most common and will be dis-
cussed first.

3.1 V-optimal Histograms

Numerous space-efficient algorithms have
been devised to deal with approximating the
data distribution. Though, most of them use
heuristics that have no provable quality guar-
antees. H.V. Jagadish et al. give several algo-
rithms in [9] that do have these guarantees.

We define a data stream as it is defined in
either of our earlier presented models. Then
V is the set of all values that ai has for all
i ∈ {1, . . . , N}. For each v ∈ V we denote the
frequency that v occurs in the data stream as
fv. We define F as the ordered (by value)
frequency vector F = (f1 f2 . . . fM) for M
distinct values.

A histogram of the data distribution
{1, . . . ,M} can be found by splitting the fre-
quency vector F up into B intervals, called
buckets. Given the fact that we are discussing
V-optimal histograms, we must make sure
that the values and frequencies of these val-
ues in each bucket approximate the real data
distribution. H.V. Jagadish et al. propose two
kinds of histograms: the space-bounded his-
togram where there is a limit B on the length
of the histogram H and the algorithm has to
find such a H that minimises some error func-
tion, and an error-bounded histogram where
there is a limit on the error ε and the algo-
rithm has to find the smallest histogram H
such that the error is at most ε. We will dis-
cuss the algorithms for the first kind, for the
second kind please refer to Section 3 of [9].

Since almost all histograms algorithms re-
quire an error function, we need a common
way to define the error between the real value
frequency and an approximated value fre-
quency. A common way is the squared error :
|f̂k − fk|2. In [9], a sum squared error is
defined for an interval [a, b]:

Sse([a, b]) =
b∑

k=a

(F [k]−Avg([a, b]))2

where

Avg([a, b]) =
∑b

k=a F [k]
b− a + 1

.

For the following algorithm and optimisations
we will use Sse as our error metric. Note
however, that another error metric could be
used just as easily.

Algorithm The algorithm given in algorithm
listing 3.1 is the basic optimal algorithm dis-
cussed in [9]. It is an one-pass, deterministic,
exact, agglomerative algorithm.

For the algorithm we define Sse∗(i, k) to
represent the smallest Sse for the prefix vec-
tor F [1, i] using at most k buckets. The al-
gorithm uses the dynamic programming tech-
nique to determine the smallest sum square
error Sse∗ = Sse∗(N,B) which is the opti-
mal Sse for the histogram. During the com-
putation, the set of bucket boundaries Sb is
be updated to reflect the situation with the
smallest Sse.

Algorithm 3.1 The Space-Bound-Histo-
gram algorithm
Space-Bound-Histogram(F,B)
1 for i← 1 to N do
2 for k ← 1 to B do
3 Sse∗(i, k)←
4 min

1≤j<i
(Sse∗(j, k − 1) + Sse([j + 1, i]))

5 update Sb accordingly
6 return Sb

Note that for each computation of
Sse∗(i, k) table lookups are used of values

6

that are already known. The algorithm given
above does not explicitly mention how the
boundary cases are calculated because they
are trivial to compute.

Performance Since the algorithm calculates
the value of Sse∗ for each of the N frequen-
cies and each of the B buckets, it performs
O(NB) calculations of Sse∗. Each compu-
tation of Sss∗ considers O(N) possible val-
ues to ultimately select the minimum, where
each value takes a constant time to be com-
puted: a lookup of Sse∗(j, k − 1) and a call
to Sse([j + 1, i]). Hence, the Space-Bound-
Histogram algorithm uses O(N2B) time.
Evidently, it uses O(N log(N)B) space since
it tabulates sum square errors for each fre-
quency value and each bucket. A value fre-
quency can be at most N since there are only
N values, and consequently the sum square
error can be at most N2 which is storable in
O(log(N)) bits.

Optimisations An optimisation of the above
algorithm that is proposed in Section 4.2 of [9]
is to compute Sse∗ by iterating from i − 1
down to 1. The exact details will be omitted
in this paper, however the end result is that
the inner loop being terminated much before
Sse has to be calculated for all possible values
of j. Hence, it is unlikely that the algorithm
takes O(N2B) time.

A second optimisation proposed in Sec-
tion 4.3 of [9] is to partition the frequency vec-
tor F in l disjoint chunks (for some arbitrary
l) and call the Space-Bound-Histogram al-
gorithm for each of the chunks. Dynamic
programming is used to determine how the
B buckets are divided over the l chunks.
H.V. Jagadish et al. ascertain that the run-
ning time of this approximation approach uses
O(N2B

l) time.

More algorithms As noted in the introduc-
tion of this subsection, there are numerous

algorithms available for this problem. An-
other “famous” algorithm is the fast, small-
space algorithm presented by A.C. Gilbert et
al. This algorithm, actually a set of related
algorithms, is much more contrived than the
basic algorithm presented above and would re-
quire too much space to explain. In essence
it first uses array sketches to approximate
the result of a data stream of updates (see
the Turnstile model), then it constructs a
histogram with the desired accuracy ε and
number of buckets B. The time to process
the updates and maintain the sketch, the
time to construct the B-histogram and the
space used by the sketch are all bounded by
poly(B, log(N), log(||A||), 1

ε).

3.2 Equi-width Histograms

Equi-width histograms have quite a different
kind of algorithms that deal with the problem.
An often used paradigm to solve the prob-
lem is the quantile approach. A q-quantile
divides a data set in q equal-sized partitions
which is clearly analogous to an equi-width
B-histogram with a data set represented by
value frequencies.

In [6], M. Greenwald and S. Khanna present
an one-pass, approximate, agglomerative al-
gorithm that computes an ε-approximate
quantile summary of a sequence of N elements
with a precision of εN which has a worst-case
space requirement of O(1

ε log(εN)).

The algorithm keeps a summery data struc-
ture S, which is a tree of tuples. When a data
item ai arrives, the algorithm will create a tu-
ple ti of ai with supporting data such as its
rank, etc. and insert in the tree accordingly.
On every 1

2ε -th arrival of a data item, it is
not inserted, but the tree S is compressed by
deleting and merging tuples. At all times, the
algorithm can answer a q-quantile query with
an approximation of εn, where n is the num-
ber of the last element that arrived until the
moment of the query. For more specifics of
the algorithm, please refer to [6].

7

3.3 End-biased Histograms

End-biased histograms are mostly used for
iceberg queries in database systems. Iceberg
queries range over a huge amount of data
items while the answer, i.e. the few frequently
occurring data items that are above a certain
threshold, is relatively small. The main prob-
lem with these queries is that the target data
items over which the queries ranges is most of
the time too big to fit in memory.

M. Fang et al. present several strategies and
algorithms in [3] to deal efficiently with these
iceberg queries. The presented algorithms are
space-efficient algorithms that are sometimes
multi-pass, and mostly deterministic and ap-
proximate. Note that in the case of iceberg
queries there is a fixed-window notion since
there is a bound on the memory use. The
data items that do not meet the threshold are
virtually omitted and approximated.

4 Conclusion

In this paper, we have discusses various
space-efficient algorithms. First the L1-
difference and Fk-Approximation algo-
rithms that can abstract over a vast num-
ber of data items and compute a property
of the data stream in a space-efficient way.
Then we looked at histograms that represent
the data distribution in a space-efficient way.
We’ve discussed briefly a few of the numer-
ous algorithms available for constructing his-
tograms. Following [2] we have distinguished
three kinds of histograms: V-optimal, equi-
width and end-based histograms, of which the
V-optimal histograms are the most common.

A subtopic that has been surpassed in this
paper is multidimensional histograms. A
thorough formal study of this kind of his-
tograms is presented in [11] by N. Thaper et
al. For other algorithms and applications re-
lated to data streams that have not been dis-
cussed here, please refer to [10].

References

[1] N. Alon, Y. Matias, and M. Szegedy,
The Space Complexity of Approximating
the Frequency Moments, STOC ’96: Pro-
ceedings of the Twenty-eighth Annual
ACM Symposium on Theory of Comput-
ing (1996), 20–29.

[2] B. Babcock, S. Babu, M. Datar, R. Mot-
wani, and J. Widom, Models and Is-
sues in Data Stream Systems, Proceed-
ings of the Twenty-first ACM SIGMOD-
SIGACT-SIGART Symposium on Prin-
ciples of Database Systems (2002), 1–16.

[3] M. Fang, N. Shivakumar, H. Garcia-
Molina, R. Motwani, and J.D. Ullman,
Computing Iceberg Queries Efficiently,
Proceedings of the 24rd International
Conference on Very Large Data Bases
(1998), 299–310.

[4] J. Feigenbaum, S. Kannan, M. Strauss,
and M. Viswanathan, An approximate
L1-difference algorithm for massive data
streams, IEEE Symposium on Foun-
dations of Computer Science, 1999,
pp. 501–511.

[5] A.C. Gilbert, S. Guha, P. Indyk,
Y. Kotidis, S. Muthukrishnan, and
M.J. Strauss, Fast, Small-space Algo-
rithms for Approximate Histogram Main-
tenance, Proceedings of the Thiry-fourth
Annual ACM Symposium on Theory of
Computing (2002), 389–398.

[6] M. Greenwald and S. Khanna, Space-
efficient Online Computation of Quantile
Summaries, Proc. of the 2001 ACM SIG-
MOD Intl. Conf. on Management of Data
(2001), 58–66.

[7] S. Guha and N. Koudas, Approximating
a Data Stream for Querying and Estima-
tion: Algorithms and Performance Eval-
uation, Proc. of the 2002 Intl. Conf. on
Data Engineering 576 (2002).

8

[8] M.R. Henzinger, P. Raghavan, and S. Ra-
jagopalan, Computing on data streams,
(1999), 107–118.

[9] HV Jagadish, N. Koudas, S. Muthukr-
ishnan, V. Poosala, K.C. Sevcik, and
T. Suel, Optimal Histograms with Qual-
ity Guarantees, Proceedings of the 24rd
International Conference on Very Large
Data Bases (1998), 275–286.

[10] S. Muthukrishnan, Data Streams: Algo-
rithms and Applications, Now Publish-
ers, 2006.

[11] N. Thaper, S. Guha, P. Indyk, and
N. Koudas, Dynamic Multidimensional
Histograms, Proceedings of the 2002
ACM SIGMOD International Conference
on Management of Data (2002), 428–439.

9

